On the Complexity of Lattice Problems with Polynomial Approximation Factors

نویسنده

  • Oded Regev
چکیده

Lattice problems are known to be hard to approximate to within sub-polynomial factors. For larger approximation factors, such as √ n, lattice problems are known to be in complexity classes such as NP∩ coNP and are hence unlikely to be NP-hard. Here we survey known results in this area. We also discuss some related zero-knowledge protocols for lattice problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

An approximation algorithm and FPTAS for Tardy/Lost minimization with common due dates on a single machine

This paper addresses the Tardy/Lost penalty minimization with common due dates on a single machine. According to this performance measure, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Initially, we present a 2-approximation algorithm and examine its worst case ratio bound. Then, a pseudo-polynomial dynamic programming algorithm is de...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

TREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS

In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010